next up previous
: ±é½¬¤Î²òÅú : ¥Ö¡¼¥ëÂå¿ô¤Î´ðÁà : ±é½¬£´

±é½¬£µ

  1. $BA$ ¤Ç, $--x =x$ (Æó½ÅÈÝÄê¤Îˡ§);
    $-(x+y)= -x \cdot -y$ (¥É¡¦¥â¥ë¥¬¥ó¤Îˡ§);
    $-(x \cdot y)= -x+-y$ (¥É¡¦¥â¥ë¥¬¥ó¤Îˡ§)
    ¤¬À®Î©¤¹¤ë¤³¤È¤ò¡¤¾ÚÌÀ¤·¤Ê¤µ¤¤¡¥

    [¾ÚÌÀ]
    $-x$ ¤Ï $x$ ¤ÎÊ丵¤À¤«¤éÄêµÁ¤Ë¤è¤ê

    \begin{eqnarray*}
&& x \cdot -x=0 \\
&& x+-x=1 \quad *1 \\
\end{eqnarray*}



    $--x$ ¤Ï $-x$ ¤ÎÊ丵¤À¤«¤éÄêµÁ¤Ë¤è¤ê

    \begin{displaymath}-x \cdot --x=0 \end{displaymath}


    \begin{displaymath}-x+--x=1 \end{displaymath}

    ¸ò´¹Î§¤Ë¤è¤ê

    \begin{displaymath}--x \cdot -x=0 \end{displaymath}


    \begin{displaymath}--x+-x=1 \quad *2 \end{displaymath}

    2ÁȤμ°*1,*2¤Ë¤è¤êÊ丵¤Î°ì°ÕÀ­¤«¤é $--x =x$

    \begin{eqnarray*}
(x+y)+(-x \cdot -y)
&=& (x+y+-x) \cdot (x+y+-y) \quad ʬÇÛ..
...¸ò´¹Î§,Ê丵Χ \\
&=& 1 \cdot 1 \quad ±é½¬4ÌäÂê(3) \\
&=& 1
\end{eqnarray*}



    \begin{eqnarray*}
\lefteqn{(x+y) \cdot (-x \cdot -y)} \\
&=& x \cdot (-x \cdo...
..., \\
&=& 0+0 \quad ±é½¬4ÌäÂê(3) \\
&=& 0 \quad ±é½¬4ÌäÂê(3)
\end{eqnarray*}



    ¤è¤Ã¤Æ,´û¤Ë¾ÚÌÀ¤·¤¿Ê丵¤Î°ì°ÕÀ­¤«¤é

    \begin{displaymath}-(x+y) = -x \cdot -y \end{displaymath}

    °Ê¸å,¸øÍý,±é½¬4¤Î·ë²Ì,¤ÏÃǤê̵¤¯»È¤¤¤Þ¤¹.ÁÐÂФθ¶Íý¤Ë¤è¤ì¤Ð

    \begin{eqnarray*}
(x \cdot y) \cdot (-x+-y)
&=& (x \cdot y \cdot -x)+(x \cdot...
...\\
&=& (y \cdot 0)+(x \cdot 0) \\
&=& 0 \cdot 0 \\
&=& 0
\end{eqnarray*}



    \begin{eqnarray*}
(x \cdot y)+(-x+-y) &=& (x+(-x+-y)) \cdot (y+(-x+-y)) \\
&=& 1+-y+-x+1 \\
&=& 1+1 \\
&=& 1
\end{eqnarray*}



    ¤è¤Ã¤Æ,Ê丵¤Î°ì°ÕÀ­¤«¤é

    \begin{displaymath}-(x \cdot y)=-x+-y \end{displaymath}

    [¾ÚÌÀ½ª]

  2. $BA$ ¤Ç,¼¡¤¬À®¤êΩ¤Ä¤³¤È¤ò¾ÚÌÀ¤·¤Ê¤µ¤¤.

    1. $ x \le x \quad $ (È¿¼ÍΧ);
    2. $(x \le y ~and~ y \le x) \Rightarrow x=y \quad $ (È¿ÂоÎΧ);
    3. $(x \le y ~and~ y \le z) \Rightarrow x \le z \quad $(¿ä°ÜΧ);

    [¾ÚÌÀ]

    1. $x+x=x$ ¤«¤éÄêµÁ¤Ë¤è¤ê $x \le x$

    2. $(x \le y ~and~ y \le x)$

      \begin{eqnarray*}
& \Rightarrow & (x+y=y ~and~ y+x=x) \quad ÄêµÁ \\
& \Rightarrow & x=y+x=x+y=y \\
& \Rightarrow & x \le x \quad ÄêµÁ
\end{eqnarray*}



    3. $(x \le y ~and~ y \le z)$

      \begin{eqnarray*}
& \Rightarrow & (x+y=y ~and~ y+z=z) \quad ÄêµÁ \\
& \Righta...
...=x+(y+z)=(x+y)+z=y+z=z \\
& \Rightarrow & x \le z \quad ÄêµÁ
\end{eqnarray*}



    [¾ÚÌÀ½ª]

  3. $BA$ ¤Ç,¼¡¤¬À®¤êΩ¤Ä¤³¤È¤ò¾ÚÌÀ¤·¤Ê¤µ¤¤.

    1. $x=-y \Leftrightarrow x+y=1 ~and~ x \cdot y=0;$
    2. $ 0 \le x \le 1; $
    3. $ (x \le z ~and~ y \le z) \Rightarrow x+y \le z; $
    4. $ (x \le z ~and~ y \le z) \Rightarrow x \cdot y \le z; $
    5. $ a \cdot x \le y \Leftrightarrow x \le -a+y. (·ë¹ç¤Î¶¯¤µ¤Ï,
-,\cdot,+ ¤Î½ç¡ª) $

    [¾ÚÌÀ]

    1. $ x=-y \Leftrightarrow x+y=1 ~and~ x \cdot y=0 $ ¤Ê¤é¤Ð,Ê丵¤Î°ì°Õ¸ºß¤Î¤³¤È¤Ç¤¹¤«¤é

      \begin{displaymath}x=-y \Rightarrow x+y=-y+y=1 ~and~ x \cdot y=-y \cdot y=0 \end{displaymath}

      µÕ¤Ë $ x+y=1 ~and~ x \cdot y=0 $ ¤Ï°Ê²¼¤Î¤è¤¦¤Ë±é½¬3¤Ç¾ÚÌÀºÑ¤ß¤Ç¤¹.

      Î㤨¤Ð

      \begin{eqnarray*}
-x &=& -x \cdot 1 \\
&=& -x \cdot (x+y) \\
&=& -x \cdot x+-x \cdot y \\
&=& x \cdot -x+y \cdot -x \\
&=& 0+y \cdot -x
\end{eqnarray*}



      \begin{eqnarray*}
y &=& y \cdot 1 \\
&=& y \cdot (x+-x) \\
&=& y \cdot x+y \cdot -x \\
&=& x \cdot y+y \cdot -x \\
&=& 0+y \cdot -x
\end{eqnarray*}



      ¤è¤Ã¤Æ

      \begin{displaymath}y=-x \end{displaymath}

      ¡¡¡¡
    2. $ 0+x=x $ ¤«¤éÄêµÁ¤Ë¤è¤ê $0 \le x$
      $x+1=1$ ¤«¤é ÄêµÁ¤Ë¤è¤ê $x \le 1$

    3. $(x \le z ~and~ y \le z)$

      \begin{eqnarray*}
& \Rightarrow & x+z=z ~and~ y+z=z \quad ÄêµÁ \\
& \Rightarr...
...+z=(x+z)+y=z+y=y+z=z \\
& \Rightarrow & x+y \le z \quad ÄêµÁ
\end{eqnarray*}



    4. (d-1)
      $(x \le z ~and~ y \le z) \Rightarrow x \cdot y \le z $

      \begin{eqnarray*}
(x \le z ~and~ y \le z)
& \Rightarrow & x \cdot z=x ~and~ y ...
... z) \cdot y=x \cdot y \\
& \Rightarrow & x \cdot y \le z ÄêµÁ
\end{eqnarray*}



      (d-2)
      $ (x \le y ~and~ x \le z) \Rightarrow x \le y \cdot z; $

      \begin{displaymath}x \le y ~and~ x \le z
\Leftrightarrow x \cdot y=x ~and~ x \cdot z=x :񂫪4(6) \end{displaymath}

      ¤Ç¤¢¤ë¤³¤È¤«¤é,

      \begin{eqnarray*}
x \cdot (y \cdot z) &=& (x \cdot y) \cdot z :·ë¹çΧ \\
&=& x \cdot z \\
&=& x
\end{eqnarray*}



      $ x \cdot (y \cdot z)=x \Leftrightarrow x \le y \cdot z :񂫪4(6) $

      [¾ÚÌÀ½ª¤ï¤ê]

    5. $a \cdot x \le y \Leftrightarrow x \le -a+y $

      [¾ÚÌÀ]

      $a \cdot x \le y $ ¤Ê¤éÄêµÁ¤Ë¤è¤ê $a \cdot x+y=y$ ¤Ç

      \begin{eqnarray*}
x+-a+y &=& x \cdot (-a+a)+-a+y \\
&=& x \cdot -a+x \cdot a+-a+y \\
&=& (x \cdot -a+-a)+(x \cdot a+y) \\
&=& -a+y
\end{eqnarray*}



      ¤è¤Ã¤Æ

      \begin{displaymath}x \le -a+y \end{displaymath}

      µÕ¤Ë $x \le -a+y$ ¤Ê¤éÄêµÁ¤Ë¤è¤ê $x \cdot (-a+y)=x$ ¤Ç

      \begin{eqnarray*}
a \cdot x+y &=& a \cdot x \cdot (-a+y)+y \\
&=& a \cdot x \...
...a+a \cdot x \cdot y+y \\
&=& 0+a \cdot x \cdot y+y \\
&=& y
\end{eqnarray*}



      ¤è¤Ã¤Æ

      \begin{displaymath}a \cdot x \le y \end{displaymath}

    ¡Î¾ÚÌÀ½ª¡Ï

  4. \begin{eqnarray*}
\lefteqn{-(-x+-y+z)+-(-x+y)+-x+z} \\
&=& x \cdot y \cdot -z...
...cdot (y+-y)+-x+z ʬÇÛ§ \\
&=& x+-x+z \\
&=& 1+z \\
&=& 1
\end{eqnarray*}



    ¾å¤ÇÍѤ¤¤¿¥É¡¦¥â¥ë¥¬¥ó§¤Î°ìÈ̲½

    \begin{displaymath}-(x_1+x_2+ \cdots +x_n)=-x_1 \cdot -x_2 \cdot \: \cdots \: \cdot -x_n \end{displaymath}


    \begin{displaymath}-(x_1 \cdot x_2 \cdot \: \cdots \: \cdot x_n)=-x_1+-x_2+ \cdots +-x_n \end{displaymath}

    ¤Ë¤Ä¤Æ¤Ï

    [¾ÚÌÀ]
    ¿ô³ØŪµ¢Ç¼Ë¡¤ò»È¤¦¤È $n=2$ ¤Ë¤Ä¤¤¤Æ¤ÏÀ®Î©.(´û¤Ë¾ÚÌÀºÑ¤ß)

    $n \le k$ ¤Ë¤Ä¤¤¤ÆÀ®Î©¤Ä¤È²¾Äꤷ¤Æ

    \begin{eqnarray*}
\lefteqn{(x_1+x_2+ \cdots +xk+x_{k+1})} \\
&=& -((x_1+x_2+ ...
...x_1 \cdot -x_2 \cdot \: \cdots \: \cdot -x_k \cdot -x_{k+1} \\
\end{eqnarray*}



    ¤è¤Ã¤Æ $n=k+1$ ¤Î¾ì¹ç¤âÀ®Î©.

    ¤Þ¤¿ÁÐÂи¶Íý¤Ë¤è¤ê

    \begin{displaymath}-(x_1 \cdot x_2 \cdot \: \cdots \: \cdot x_n)=-x_1+-x_2+ \cdots +-x_n \end{displaymath}

    [¾ÚÌÀ½ª]

  5. ${\bf N}$ ¤ò¼«Á³¿ôÁ´ÂΤν¸¹ç¤È¤·¤Þ¤¹. $N$ ¤ò $0$ ¤Ç¤Ê¤¤¼«Á³¿ô¤È¤·, ¤É¤ó¤ÊÁÇ¿ô $P$ ¤Ë¤Ä¤¤¤Æ¤â, $N$ ¤Ï $P$ ¤Î2¾è¤Ç³ä¤êÀÚ¤ì¤Ê¤¤¤â¤Î¤È¤·¤Þ¤¹ (¤³¤³¤Ç¤Ï, $0$ ¤Ï¼«Á³¿ô¤ÎÆâ¤Ë´Þ¤á¤ë ¤â¤Î¤È¤·¤Þ¤¹). ¤³¤Î¤È¤­,

    \begin{displaymath}
A_n = \{ x \in {\bf N}:1 \le x \le N ,x ¤Ï N ¤ò³ä¤êÀÚ¤ë
\mbox{ } (¤Ä¤Þ¤ê¡¤N ¤Ï x ¤ÎÇÜ¿ô) \}
\end{displaymath}

    ¤È¤ª¤­¤Þ¤¹. Ǥ°Õ¤Î $x,y \in A_n$ ¤Ë¤Ä¤¤¤Æ, $x+y$ ¤ò $x$ ¤È $y$ ¤ÎºÇ¾®¸øÇÜ¿ô ¤ÈÄêµÁ¤·, $x \cdot y$ ¤ò $x$ ¤È $y$ ¤ÎºÇÂç¸øÌó¿ô¤ÈÄêµÁ¤·¤Þ¤¹.¤Þ¤¿,Ǥ°Õ¤Î $ x \in A_n$ ¤Ë¤Ä¤¤¤Æ, $-x$ ¤ò $N/x (N$ ¤ò $x$ ¤Ç³ä¤Ã¤¿¾¦)¤ÈÄêµÁ¤·¤Þ¤¹. ¤³¤Î¤È¤­,¼¡¤ÎÌ䤤¤ËÅú¤¨¤Ê¤µ¤¤.

    1. Ǥ°Õ¤Î $x,y \in A_n$ ¤Ë¤Ä¤¤¤Æ, $x+y=y \Leftrightarrow (y¤Ïx¤ÎÇÜ¿ô)$ ¤ò¾ÚÌÀ¤·¤Ê¤µ¤¤.
      [¾ÚÌÀ]

      $x,y$ ¤ÎºÇ¾®¸øÇÜ¿ô¤ò $L(x,y)$ ¤Çɽ¤¹¤³¤È¤Ë¤¹¤ë¤È

      \begin{eqnarray*}
x+y=y & \Leftrightarrow & L(x,y)=y ÄêµÁ¤«¤é \\
& \Leftright...
...sts k \in {\bf N})(kx=y) \\
& \Leftrightarrow & (y¤Ïx¤ÎÇÜ¿ô)
\end{eqnarray*}



      [¾ÚÌÀ½ª]

    2. $1,N \in A_n $ ¤Ç¤¢¤ë¤³¤È¤ò³Îǧ¤·¤Ê¤µ¤¤.

      [¾ÚÌÀ]

      $ 1/1=1,1 \le 1 \le N $ ¤æ¤¨ $ 1 \in A_n $
      $ N/N=1,1 \le N \le N $ ¤æ¤¨ $ N \in A_n $

      [¾ÚÌÀ½ª]

    3. $x+y=y$ ¤ò, $x \le y$ ¤È½ñ¤¯¤³¤È¤Ë¤¹¤ë. Ǥ°Õ¤Î $x,y,z \in A_n$ ¤Ë¤Ä¤¤¤Æ

      1. $x \le x$ (È¿¼ÍΧ);
      2. $ (x \le y ~and~ y \le x) \Rightarrow x=y $ (È¿ÂоÎΧ);
      3. $ (x \le y ~and~ y \le z) \Rightarrow x \le z $ (¿ä°ÜΧ)

      [¾ÚÌÀ]
      $x,y$ ¤ÎºÇ¾®¸øÇÜ¿ô¤ò $L(x,y)$ ¤Çɽ¤¹¤³¤È¤Ë¤¹¤ë¤È

      1. $L(x,x)=x$ ¤æ¤¨

        \begin{displaymath}x+x=x \end{displaymath}

        ¤è¤Ã¤Æ

        \begin{displaymath}x \le x \end{displaymath}


      2. $(x \le y ~and~ y \le x)$ ¤È¤¹¤ë¤È

        \begin{displaymath}L(x,y)=y ~and~ L(y,x)=x \end{displaymath}


        \begin{displaymath}(\exists k \in {\bf N})(kx=y) ~and~ (\exists l \in {\bf N})(ly=x) \end{displaymath}

        ¤³¤³¤Ç

        \begin{displaymath}(\exists k \in {\bf N})(kx=y) ¤È¤Ê¤ë k \end{displaymath}


        \begin{displaymath}(\exists l \in {\bf N})(ly=x) ¤È¤Ê¤ë l \end{displaymath}

        ¤òÁª¤Ö¤È, $ y=kx=kly $ ¤«¤é $kl=1$ ¤è¤Ã¤Æ

        \begin{displaymath}l=k=1 \end{displaymath}

        ¡¡¡¡¡¡¤è¤Ã¤Æ

        \begin{displaymath}y=x \end{displaymath}


      3. $(x \le y ~and~ y \le z)$ ¤È¤¹¤ë¤È

        \begin{displaymath}L(x,y)=y ~and~ L(y,z)=z \end{displaymath}


        \begin{displaymath}(\exists k \in {\bf N})(kx=y) ~and~ (\exists l \in {\bf N})(ly=z) \end{displaymath}

        ¡¡¡¡¡¡¤³¤³¤Ç

        \begin{displaymath}(\exists k \in {\bf N})(kx=y) ¤È¤Ê¤ë k \end{displaymath}


        \begin{displaymath}(\exists l \in {\bf N})(ly=z) ¤È¤Ê¤ë l \end{displaymath}

        ¤òÁª¤Ö¤È $ (lk)x=ly=z $ ¤è¤Ã¤Æ

        \begin{displaymath}L(x,z)=z \end{displaymath}

        ¤æ¤¨¤Ë

        \begin{displaymath}x \le z \end{displaymath}

      [¾ÚÌÀ½ª]

    4. Ǥ°Õ¤Î $x,y,z \in A_n$ ¤Ë¤Ä¤¤¤Æ,

      \begin{eqnarray*}
&& x \cdot (y+z)=x \cdot y+x \cdot z \\
&& x+y \cdot z=(x+y) \cdot (x+z) (ʬÇÛΧ,ʬÇÛˡ§)
\end{eqnarray*}



      [¾ÚÌÀ]
      $x,y$ ¤ÎºÇ¾®¸øÇÜ¿ô¤ò $L(x,y)$ ¤Ç,ºÇÂç¸øÌó¿ô¤È $G(x,y)$ ¤Çɽ¤¹¤³¤È ¤Ë¤¹¤ë¤È

      \begin{eqnarray*}
x \cdot (y+z) &=& G(x,L(y,z)) ÄêµÁ \\
&=& L(G(x,y),G(x,z)) ¼«Á³¿ô¤ÎÀ­¼Á \\
&=& x \cdot y+x \cdot z ÄêµÁ
\end{eqnarray*}



      \begin{eqnarray*}
x+y \cdot z &=& L(x,G(y,z)) ÄêµÁ \\
&=& G(L(x,y),L(x \cdot z)) ¼«Á³¿ô¤ÎÀ­¼Á \\
&=& (x+y) \cdot (x+z) ÄêµÁ
\end{eqnarray*}



      [¾ÚÌÀ½ª]

    5. $ A_gN =(A_n,+, \cdot,-,1,N)$ ¤Ï¥Ö¡¼¥ëÂå¿ô¤Ç¤¢¤ë¤³¤È¤ò ¾ÚÌÀ¤·¤Ê¤µ¤¤.

      [¾ÚÌÀ]
      $ A_n= \{ x \in {\bf N}:1 \le x \le N,x $ ¤Ï $N$ ¤ò³ä¤êÀÚ¤ë (¤Ä¤Þ¤ê, $N$ ¤Ï $x$ ¤ÎÇÜ¿ô) $\}$
      $x,y$ ¤ÎºÇ¾®¸øÇÜ¿ô¤ò $L(x,y)$ ¤Ç,ºÇÂç¸øÌó¿ô¤È $G(x,y)$ ¤Çɽ¤¹¤³¤È ¤Ë¤¹¤ë.

      (1)
      (b)¤«¤é $1,N \in A_n $ ¤Ç $A_n$ ¤Ï¶õ¤Ç¤Ê¤¤½¸¹ç¤Ç¤¢¤ë. $x,y \in A_n$ ¤Ë¤Ä¤¤¤Æ $ x+y=L(x,y),x \cdot y=G(x,y) $¤È ¤¹¤ë¤È
      $x,y \in A_n$ ¤«¤é

      \begin{displaymath}x,y\geq 1,
(\exists k \in {\bf N})(N=kx),(\exists l \in {\bf N})(N=ly) \end{displaymath}

      ¤³¤Î¤è¤¦¤Ê $k,l$ ¤òÁª¤Ù¤Ð $kx=N=ly$ ¤¹¤Ê¤ï¤Á, $N$ ¤Ï $x,y$ ¤Î¸øÇÜ¿ô. ¤è¤Ã¤ÆºÇ¾®¸øÇÜ¿ô $L(x,y)$ ¤Ï $N$ ¤ò ³ä¤êÀÚ¤ë.
      ¤Þ¤¿ $x,y \geq 1$ ¤«¤é

      \begin{displaymath}L(x,y) \geq 1 \end{displaymath}

      ¤è¤Ã¤Æ

      \begin{displaymath}x+y=L(x,y) \in A_n \end{displaymath}

      $G(x,y)$ ¤Ï $x,y$ ¤ò³ä¤êÀÚ¤ê, $x,y$ ¤Ï $N$ ¤ò³ä¤êÀڤ뤫¤é $G(x,y)$ ¤Ï½¾¤Ã¤Æ $N$ ¤ò³ä¤êÀÚ¤ë. ¤Þ¤¿ $x,y \geq 1$ ¤«¤é $G(x,y) \geq 1$ ¤è¤Ã¤Æ

      \begin{displaymath}x \cdot y \in A_n \end{displaymath}

      $ x \in A_n$ ¤Ê¤é $x \geq 1,(\exists k \in {\bf N})(N=kx)$ ¤Ç ¤½¤Î¤è¤¦¤Ê $k$ ¤ò¤È¤ì¤Ð $-x = k \geq 1$ ¤Ç,

      \begin{displaymath}-x=k \in {\bf N} \end{displaymath}

      ¤è¤Ã¤Æ $A_n$ ¤Ï $+,\cdot,-$ ¤Ë¤Ä¤¤¤ÆÊĤ¸¤Æ¤¤¤ë;

      (2)
      Ǥ°Õ¤Î $x,y,z \in A$ ¤Ë¤Ä¤¤¤Æ¡§

      (úÀ)

      \begin{displaymath}x+y=L(x,y)=L(y,x)=y+x \end{displaymath}


      \begin{displaymath}x \cdot y=G(x,y)=G(y,x)=y \cdot x \end{displaymath}

      (úÁ)

      \begin{displaymath}x+(y+z)=L(x,L(y,z))=L(L(x,y),z)=(x+y)+z \end{displaymath}


      \begin{displaymath}x \cdot (y \cdot z)=G(x,G(y,z))
=G(G(x,y),z)=(x \cdot y) \cdot z \end{displaymath}

      (úÂ)

      \begin{displaymath}x \cdot y+y=L(G(x,y),y)=y \end{displaymath}


      \begin{displaymath}(x+y) \cdot y=G(L(x,y),y)=y \end{displaymath}

      (úÃ)
      (d)¤è¤ê

      \begin{displaymath}x \cdot (y+z)=x \cdot y+x \cdot z, \end{displaymath}


      \begin{displaymath}x+y \cdot z=(x+y) \cdot (x+z) \end{displaymath}

      (úÄ)
      ¤É¤ó¤ÊÁÇ¿ô $P$ ¤Ë¤Ä¤¤¤Æ¤â, $N$ ¤Ï $P$ ¤Î2¾è¤Ç³ä¤êÀÚ¤ì¤Ê¤¤ ¤«¤é

      \begin{displaymath}x \cdot -x=G(x,N/x)=1 ¼«Á³¿ô¤ÎÀ­¼Á \end{displaymath}

      ¤Þ¤¿,

      \begin{displaymath}L(x,N/x)=N \end{displaymath}

      [¾ÚÌÀ½ª]

[LCM,GCM¤Ë¤Ä¤¤¤Æ¤ÎÊä­]

$x,y$ ¤ÎºÇÂç¸øÌó¿ô,ºÇ¾®¸øÇÜ¿ô¤ò $G(x,y),L(x,y)$ ¤Çɽ¤·¤Þ¤¹.

¤·¤«¤·,¤­¤ê¤¬Ìµ¤¤¤Î¤Ç¡ÖÁÇ°ø¿ôʬ²ò¤Î°ì°ÕÀ­¡×¤Ï»È¤¦¤³¤È¤Ë¤·¤Þ¤¹.
$P_m$ ¤ÇÁÇ¿ôÁ´ÂΤν¸¹ç¤òɽ¤¹¤È¤·¤Þ¤¹.
¼ÌÁü $ \tau : x \in {\bf N}- \{ 0 \}
\rightarrow \tau (x) \in P ((P_m \cup \{ 1 \} ) \times {\bf N}) $ ¤ò¼¡¤Î¤è¤¦¤ËÄêµÁ¤·¤Þ¤¹.
$x \in {\bf N}, \ne 0,1$ ¤È¤¹¤ë¤È¤­¡ÖÁÇ°ø¿ôʬ²ò¤Î°ì°ÕÀ­¡×¤«¤é

\begin{displaymath}(\exists ! n \in {\bf N})( \exists !(p_1,p_2, \cdots ,p_n) \in {P_m}^n )\end{displaymath}


\begin{displaymath}(\exists ! (l_1,l_2, \cdots ,l_n) \in {N_b}^n) \end{displaymath}


\begin{displaymath}(x={p_1}^{l_1} \cdot {p_2}^{l_2} \cdot \: \cdots \: \cdot {p_n}^{l_n}) \end{displaymath}

$x=1$ ¤Î¤È¤­¤Ï $x=1^1$ ¤È¤·¤Æ

\begin{displaymath}\tau(x)= \{ (1,1) \} \cup
(\cup \{ \{ \{ (p_k,i) \} \vert i=1, \cdots ,l_k \} \vert k=1, \cdots ,n \} \end{displaymath}

Îã: $x=24$ ¤Ê¤é $x=1^1 \cdot 2^3 \cdot 3$ ¤Ç

\begin{displaymath}\tau(x)= \{ (1,1),(2,1),(2,2),(2,3),(3,1) \} \end{displaymath}

¤³¤Î¤È¤­ $\tau$ ¤Îºî¤êÊý¤«¤é $\tau(x)= \tau(y)$¤Ê¤é $x=y$ (¤¹¤Ê¤ï¤Áñ¼Í)
¤Þ¤¿,

\begin{displaymath}\tau (G(x,y))= \tau(x) \cap \tau(y) \end{displaymath}


\begin{displaymath}\tau (L(x,y))= \tau(x) \cup \tau(y) \end{displaymath}

¤Ç¤¹.

°Ê²¼, $x,y,z \ne 0$ ¤È¤·¤Þ¤¹.

$<¸ò´¹Â§: x+y=y+x >$

\begin{eqnarray*}
\tau (G(x,y)) &=& \tau (x) \cap \tau (y) \\
&=& \tau (y) \cap \tau (x) \\
&=& \tau (G(y,x))
\end{eqnarray*}



$\tau$ ¤Ïñ¼Í¤À¤«¤é $G(x,y)=G(y,x)$

$<¸ò´¹Â§:x \cdot x=y \cdot x>$

\begin{eqnarray*}
\tau(L(x,y)) &=& \tau(x) \cup \tau(y) \\
&=& \tau(y) \cup \tau(x) \\
&=& \tau (L(y,x))
\end{eqnarray*}



$\tau$ ¤Ïñ¼Í¤À¤«¤é $L(x,y)=L(y,x)$

$<·ë¹ç§:(x+y)+z=x+(y+z)>$

\begin{eqnarray*}
\tau(G(G(x,y),z)) &=& \tau(G(x,y)) \cap \tau(z) \\
&=& (\ta...
... \\
&=& \tau(x) \cap \tau(G(y,z)) \\
&=& \tau (G(x,G(y,z)))
\end{eqnarray*}



$\tau$ ¤Ïñ¼Í¤À¤«¤é $ G(G(x,y),z)=G(x,G(y,z)) $
Á´¤¯Æ±ÍͤË

$<·ë¹ç§:(x \cdot y) \cdot z=x \cdot (y \cdot z)>$

\begin{eqnarray*}
\tau(L(L(x,y),z)) &=& \tau(L(x,y)) \cup \tau(z) \\
&=& (\ta...
...) \\
&=& \tau(x) \cup \tau(L(y,z)) \\
&=& \tau(L(x,L(y,z)))
\end{eqnarray*}



$\tau$ ¤Ïñ¼Í¤À¤«¤é $ L(L(x,y),z)=L(x,L(y,z)) $

$<µÛ¼ýΧ:x \cdot y+y=y >$

\begin{eqnarray*}
\tau(G(L(x,y),y)) &=& \tau(L(x,y)) \cup \tau(y) \\
&=& (\tau(x) \cap \tau(y)) \cup \tau(y) \\
&=& \tau(y)
\end{eqnarray*}



$\tau$ ¤Ïñ¼Í¤À¤«¤é $G(L(x,y),y)=y$

$<µÛ¼ýΧ:(x+y) \cdot y=y >$

\begin{eqnarray*}
\tau(L(G(x,y),y)) &=& \tau(G(x,y)) \cap \tau(y) \\
&=& (\tau(x) \cup(y)) \cap \tau(y) \\
&=& \tau(y)
\end{eqnarray*}



$\tau$ ¤Ïñ¼Í¤À¤«¤é $ L(G(x,y),y)=y $

$<ʬÇÛΧ:(x \cdot y)+z=(x+z) \cdot (y+z)>$

\begin{eqnarray*}
\tau(G(L(x,y),z)) &=& \tau(L(x,y)) \cap \tau(z) \\
&=& (\ta...
... \tau(G(x,z)) \cup \tau(G(y,z)) \\
&=& \tau(L(G(x,z),G(y,z)))
\end{eqnarray*}



$\tau$ ¤Ïñ¼Í¤À¤«¤é $ G(L(x,y),z)=L(G(x,z),G(y,z)) $

$<ʬÇÛΧ:(x+y) \cdot z=(x \cdot z)+(y \cdot z)>$

\begin{eqnarray*}
\tau(L(G(x,y),z)) &=& \tau(G(x,y)) \cup \tau(z) \\
&=& (\ta...
... \tau(L(x,z)) \cap \tau(L(y,z)) \\
&=& \tau(G(L(x,z),L(y,z)))
\end{eqnarray*}



$\tau$ ¤Ïñ¼Í¤À¤«¤é $ L(G(x,y),z)=G(L(x,z),L(y,z)) $

$N$ ¤ò¤É¤ó¤ÊÁÇ¿ô $P$ ¤Ë¤Ä¤¤¤Æ¤â, $P$ ¤Î2¾è¤Ç³ä¤êÀÚ¤ì¤Ê¤¤¿ô¤È¤¹¤ë¤È $N=1 \cdot p_1 \cdot \: \cdots \: \cdot p_n $ ¤Î·Á¤ò¤·¤Æ¤¤¤ë¤Î¤Ç, $x$ ¤¬ $N$ ¤ò³ä¤ê¤­¤ë¤È¤¹¤ë¤È $x$ ¤Ï1¤È, $p_1, \cdots ,p_n$ ¤«¤é ´ö¤Ä¤«Áª¤Ð¤ì¤¿ÁÇ¿ô¤ÎÀÑ¤Ç $-x=N/x$ ¤Ï1¤È $x$ ¤Ë»È¤ï¤ì¤¿ $p_1, \cdots ,p_n$ ¤Î»Ä¤ê¤ÎÁÇ¿ô¤ÎÀѤÇ


\begin{displaymath}\tau(G(x,N/x)) = \{ (1,1) \}= \tau(1) \end{displaymath}

$\tau$ ¤Ïñ¼Í¤À¤«¤é $G(x,N/x)=1$
¤Þ¤¿

\begin{displaymath}\tau(L(x,N/x))= \tau(N) \end{displaymath}

$\tau$ ¤Ïñ¼Í¤À¤«¤é $L(x,N/x)=N$


next up previous
: ±é½¬¤Î²òÅú : ¥Ö¡¼¥ëÂå¿ô¤Î´ðÁà : ±é½¬£´
Yasunari SHIDAMA