next up previous
: ±é½¬3 : ¥Ö¡¼¥ëÂå¿ô¤Î´ðÁà : ÁÐÂи¶Íý¤Ë¤Ä¤¤¤Æ¤ÎÊä­

´ðËÜŪ¤ÊÌ¿Âê

Á°Àá¤Þ¤Ç¤Ë,¥Ö¡¼¥ëÂå¿ô¤Î½éÅù»»½Ñ¤È¤â¸À¤¦¤Ù¤­¿§¡¹¤ÊÄêÍý¤ò¾ÚÌÀ¤·¤Æ¤¤¤¿¤À¤­¤Þ¤·¤¿ (¤³¤³¤Ç,ÄêÍý¤È¤Ï¥Ö¡¼¥ëÂå¿ô¤Ë¤ª¤¤¤Æ¾ÚÌÀ¤µ¤ì¤¿¼°¤Î¤³¤È.).
¤Þ¤º¤½¤ì¤ò¿ô»ú¤¬Á°¸å¤·¤Þ¤¹¤¬, Ì¿Âê6 (¤½¤Î1) ¤È¤·¤Æ¾ÚÌÀÉÕ¤­¤Ç¤Þ¤È¤á¤Æ¤ª¤­¤Þ¤·¤ç¤¦. (±é½¬Åù¤Ç¾ÚÌÀ¤µ¤ì¤¿Êý¤â,¤â¤¦°ìÅÙÉü½¬¤ò¤«¤Í¤ÆÌܤòÄ̤·¤Æ¤ª¤¤¤Æ¤¯¤À¤µ¤¤. ¤ä¤êÊýÅù,»²¹Í¤Ë¤Ê¤ë¤Ç¤·¤ç¤¦.) Ì¿Âê6(¤½¤Î1)¤ÎÆâÍƤÏ,º£¸å,Æäˤ³¤È¤ï¤é¤º¼«Í³¤ËÍѤ¤¤ë¤³¤È¤Ë¤·¤Þ¤¹¡£


[Ì¿Âê6]
(¤½¤Î1)
  1. $x+x =x; \quad $ (¤Ù¤­ÅùΧ)
  2. $x \cdot x =x; \quad $ (¤Ù¤­ÅùΧ)
  3. $x \leq x; \quad $ (È¿¼ÍΧ)
  4. $(x \leq y ~and~ y \leq x) \Rightarrow x=y; \quad $ (È¿ÂоÎΧ)
  5. $(x\leq y ~and~ y \leq z) \Rightarrow x \leq z; \quad $ (¿ä°ÜΧ)
  6. $x \leq y \Leftrightarrow x \cdot y=x;$
  7. $x \cdot 0=0; $
  8. $x \cdot 1=x;$
  9. $x+0=x;$
  10. $x+1=1;$
  11. $x \leq y \Leftrightarrow x \cdot -y=0; $
  12. $x=-y \Leftrightarrow (x+y=1 ~and~ x \cdot y=0); \quad $ (Ê丵¤Î°ì°ÕÀ­)
  13. $--x =x; \quad $ (Æó½ÅÈÝÄê¤Îˡ§)
  14. $-(x+y)= -x \cdot -y; \quad $ (¥É¡¦¥â¥ë¥¬¥ó¤Îˡ§)
  15. $-(x \cdot y)= -x+-y; \quad $ (¥É¡¦¥â¥ë¥¬¥ó¤Îˡ§)
  16. $0 \leq x \leq 1; $
  17. $(x \leq z ~and~ y \leq z )
\Rightarrow x+y \leq z; $
  18. $(x \leq y ~and~ y \leq z) \Rightarrow x \leq y \cdot z. $
(Ì¿Âê6(¤½¤Î1)½ª¤ï¤ê)

[Ì¿Âê6]
(¤½¤Î1)¤Î ¾ÚÌÀ
  1. \begin{eqnarray*}
x & = & x \cdot x+x \quad ÄêµÁ3(2)(úÂ) \\
& = & x+x \cdot x \...
...\cdot x \quad ÄêµÁ3(2)(úÀ) \\
& = & x+x \quad ÄêµÁ3(2)(úÂ) \\
\end{eqnarray*}



  2. ÁÐÂФθ¶Íý¤ò(1)¤ËŬÍѤ·¤Æ, $x \cdot x =x.$
  3. (1) ¤«¤é,ÄêµÁ¤Ë¤è¤ê $x \leq x.$
  4. $x \leq y $ ¤È $y\leq x$ ¤ò²¾Äꤹ¤ë. $\leq$ ¤ÎÄêµÁ¤«¤é,ÄêµÁ 3(2)(i)¤Ë¤è¤Ã¤Æ, $y=x+y=y+x=x.$
  5. $x \leq y $ ¤È $y \leq z$ ¤ò²¾Äꤹ¤ë. $\leq$ ¤ÎÄêµÁ¤«¤é, $x+y=y,y+z=z.$ ½¾¤Ã¤Æ,·ë¹çΧ(ÄêµÁ3(2)(ii))¤òÍѤ¤¤Æ,

    \begin{displaymath}x+z=x+(y+z)=(x+y)+z=y+z=z \end{displaymath}

    ¤¬¤¤¤¨¤ë.¤¹¤Ê¤ï¤Á, $x \leq z$ ¤òÆÀ¤ë.
  6. $( \Rightarrow )x \leq y$ ¤ò²¾Äꤹ¤ë. $\leq$ ¤ÎÄêµÁ¤«¤é, $x+y=y.$ÄêµÁ3(2)(iii)¤«¤é, $ x \cdot y=x \cdot (x+y)=x.$
    ( $\Rightarrow$ ¤ÎµÕ) º£¾å¤Ç, $x+y=y \Rightarrow x \cdot y=x$ ¤ò¾ÚÌÀ¤·¤¿.¤³¤ì¤ËÁÐÂФθ¶Íý¤òŬÍѤ¹¤ë¤È, $x \cdot y=y \Rightarrow x+y=x $ ¤òÆÀ¤ë.¤³¤³¤Ç, $x,y$ ¤òÃÖ¤­´¹¤¨¤ë¤È, $y \cdot x=x \Rightarrow y+x=y.$ ¤³¤ì¤Ï¤¹¤Ê¤ï¤Á, $x \cdot y=x \Rightarrow x \leq y$ ¤Ç¤¢¤ë.
  7. \begin{eqnarray*}
x \cdot 0 &=& x \cdot (x \cdot -x) \quad ÄêµÁ3(2)(v) \\
&=& (...
...ad ÄêµÁ3(2)(ii) \\
&=& x \cdot -x=0 \quad (2)¤ÈÄêµÁ3(2)(v) \\
\end{eqnarray*}



  8. \begin{eqnarray*}
x \cdot 1 &=& x \cdot (x+-x) \quad ÄêµÁ3(2)(v) \\
&=& (-x+x) \cdot x \quad ÄêµÁ3(2)(i) \\
&=& x \quad ÄêµÁ3(2)(iii) \\
\end{eqnarray*}



  9. ÁÐÂФθ¶Íý¤ò(8)¤ËŬÍѤ·¤Æ $x+0=x.$
  10. ÁÐÂФθ¶Íý¤ò(7)¤ËŬÍѤ·¤Æ $x+1=1.$
  11. $( \Rightarrow )x \leq y$ ¤ò²¾Äꤹ¤ë.(6)¤«¤é, $x \cdot y= x.$ ¤³¤ì¤òÍѤ¤¤Æ,

    \begin{eqnarray*}
x \cdot (-y) &=& (x \cdot y) \cdot (-y) \\
&=& x \cdot (y \c...
...ad ÄêµÁ3(2)(ii) \\
&=& x \cdot 0=0 \quad (7)¤ÈÄêµÁ3(2)(v) \\
\end{eqnarray*}



    $( \Rightarrow ¤ÎµÕ)x \cdot -y=0$ ¤ò²¾Äꤹ¤ë.¤¹¤ë¤È,

    \begin{eqnarray*}
x \cdot y &=& x \cdot y+0 \quad (9) \\
&=& x \cdot y+x \cdot ...
...d ÄêµÁ3(2)(iv) \\
&=& x \cdot 1 = x \quad (8)¤ÈÄêµÁ3(2)(v) \\
\end{eqnarray*}



    ¤¬¤¤¤¨¤ë.(4) ¤«¤é, $x \leq y $ ¤¬À®Î©¤¹¤ë.

  12. $( \Rightarrow )x=-y$ ¤ò²¾Äꤹ¤ë.¤³¤ì¤ÈÄêµÁ3(2)(i)¤È(v)¤«¤é, $ x+y=-y+y=y+-y=0 $ ¤¬¤¤¤¨¤ë.¤Þ¤¿Æ±ÍͤË,ÄêµÁ3(2)(i)¤È(v)¤«¤é, $x \cdot y=-y \cdot y=y \cdot -y=1 $ ¤¬¤¤¤¨¤ë.
    $( \Rightarrow ¤ÎµÕ)x+y=1$ ¤È $x \cdot y=0$ ¤ò²¾Äꤹ¤ë.¤½¤Î¤È¤­,

    \begin{eqnarray*}
x &=& x \cdot 1 \quad (8) \\
&=& x \cdot (y+-y) \quad ÄêµÁ3(2...
...&=& 1 \cdot -y \quad ²¾Äê \\
&=& -y \quad (8)¤ÈÄêµÁ3(2)(i) \\
\end{eqnarray*}



  13. ÄêµÁ3(2)(v)¤È(12)¤«¤é, $--x =x$ ¤òÆÀ¤ë.
  14. ¤Þ¤º,

    \begin{eqnarray*}
x+y+-x \cdot -y &=& x+(x+-x) \cdot y+-x \cdot -y \quad
ÄêµÁ3...
...=& x+-x \quad (8)¤ÈÄêµÁ3(2)(v) \\
&=& 1 \quad ÄêµÁ3(2)(v) \\
\end{eqnarray*}



    \begin{eqnarray*}
(x+y) \cdot -x \cdot -y &=& x \cdot -x \cdot -y+y \cdot -x \cd...
...(iv) \\
&=& 0+0 \quad (7)¤ÈÄêµÁ3(2)(i) \\
&=& 0 \quad (9) \\
\end{eqnarray*}



    ¤¬¤¤¤¨¤ë.¾å¤Î£²¼°¤Ë(12)¤òŬÍѤ·¤Æ,¥É¡¦¥â¥ë¥¬¥ó¤Îˡ§ $-(x+y)= -x \cdot -y$ ¤¬À®Î©¤¹¤ë.
  15. ÁÐÂФθ¶Íý¤ò(14)¤Î¥É¡¦¥â¥ë¥¬¥ó¤Îˡ§¤ËŬÍѤ·¤Æ,¤â¤¦°ì¤Ä¤Î¥É¡¦¥â¥ë¥¬¥ó¤Îˡ§ $-(x \cdot y)= -x+-y$ ¤òÆÀ¤ë.
  16. (9)¤ÈÄêµÁ3(2)(i)¤«¤é, $0 \leq x$ ¤¬¤¤¤¨¤ë.(10) ¤«¤é, $x \leq 1.$ ½¾¤Ã¤Æ, $0 \leq x \leq 1.$
  17. $x \leq z$ ¤È $y \leq z$ ¤ò²¾Äꤹ¤ë. $\leq$ ¤ÎÄêµÁ¤«¤é, $x+z=z,y+z=z.$ ½¾¤Ã¤Æ,·ë¹çΧ(ÄêµÁ3(2)(ii))¤òÍѤ¤¤Æ,

    \begin{displaymath}(x+y)+z=x+(y+z)=x+z=z \end{displaymath}

    ¤¬¤¤¤¨¤ë.¤³¤ì¤¬¾ÚÌÀ¤¹¤Ù¤­¤³¤È¤Ç¤¢¤Ã¤¿.
  18. $x \leq y $ ¤È $x \leq z$ ¤ò²¾Äꤹ¤ë.(6)¤«¤é, $x \cdot y=x,x \cdot z=x.$ ½¾¤Ã¤Æ,¤³¤ì¤òÍѤ¤¤Æ·ë¹çΧ(ÄêµÁ3(2)(ii))¤«¤é,

    \begin{displaymath}x \cdot (y \cdot z)=(x \cdot y) \cdot z=x \cdot z=z \end{displaymath}

    ¤¬¤¤¤¨¤ë.¤³¤ì¤¬¾ÚÌÀ¤¹¤Ù¤­¤³¤È¤Ç¤¢¤Ã¤¿.(Ãí:(18)¤Ï(17)¤ËÁÐÂФθ¶Íý¤òŬÍѤ·¤ÆƳ¤¯¤³¤È¤â¤Ç¤­¤ë)

[Ì¿Âê6(¤½¤Î£±)¤Î¾ÚÌÀ½ª¤ï¤ê]

¤â¤¦¾¯¤·,¥Ö¡¼¥ëÂå¿ô¤Î½éÅùŪ¤ÊÀ­¼Á¤ò¸«¤Æ¤ß¤Þ¤·¤ç¤¦.

[Ì¿Âê6]
(¤½¤Î2)
  1. $x \leq x+y,y \leq x+y; $
  2. $x \cdot y \leq x,x \cdot y \leq y ;$
  3. $x \leq y \Rightarrow x \cdot a \leq y \cdot a;$
  4. $x \leq y \Rightarrow x+a \leq y+a;$
  5. $-x \leq y \Leftrightarrow x+y=1;$
  6. $x \leq -y \Leftrightarrow x \cdot y=0;$
  7. $-0=1,-1=0;$
  8. $x \leq y \Rightarrow -y \leq -x .$

(Ì¿Âê6(¤½¤Î2)½ª¤ï¤ê)

[Ì¿Âê6]
(¤½¤Î2)¤Î¾ÚÌÀ
(±é½¬10)¤ò»²¾È.
[Ì¿Âê6(¤½¤Î2)¤Î¾ÚÌÀ½ª¤ï¤ê]

¾¯¤·,¥¦¥©¡¼¥ß¥ó¥°¥¢¥Ã¥×¤ò¤·¤Þ¤·¤ç¤¦.

(񂫪10)
Ì¿Âê6(¤½¤Î2)¤ò¾ÚÌÀ¤·¤Ê¤µ¤¤.
(±é½¬10¤Î½ª¤ï¤ê)

¤µ¤Æ,¥Ö¡¼¥ëÂå¿ô¤Ï«ÏÀ(lattice theory)¤ÎÊý¤«¤éÆÃħÉÕ¤±¤Ç¤­¤Þ¤¹¡£
¤Ä¤Þ¤ê,¥Ö¡¼¥ëÂå¿ô¤ÏÁêÊäŪ¤ÊʬÇÛ«¤È¤·¤ÆÄêµÁ¤¹¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£
¤½¤ì¤Ë¤Ä¤¤¤Æ¾¯¤·¿¨¤ì¤Æ¤ª¤­¤Þ¤·¤ç¤¦.¾¯¤·Ä¹¤¤½àÈ÷¤¬É¬ÍפǤ¹¡£
¤³¤ÎÀá¤Ï¤½¤Î½àÈ÷¤Ç½ª¤ï¤Ã¤Æ¤·¤Þ¤¤¤Þ¤¹¡£
¼¡Àá¤Ç, ¥Ö¡¼¥ëÂå¿ô¤òÁêÊäŪ¤ÊʬÇÛ«¤È¤·¤ÆÄêµÁ¤·¤Þ¤·¤ç¤¦. ¤Þ¤º,«¤òÄêµÁ¤·¤¿¤¤¤Î¤Ç¤¹¤¬,¤½¤Î¤¿¤á¤ËȾ½ç½ø¤Î³µÇ°¤¬É¬ÍפǤ¹¡£
(½ç½ø¤Ë´Ø¤·¤Æ,ÄêµÁ¤¬Ê¬»¶¤¹¤ë¤È·ù¤Ê¤Î¤Ç,²¼¤Ç¤«¤Ê¤ê¤Þ¤È¤Þ¤Ã¤Æ½ñ¤¤¤Æ¤·¤Þ¤¤¤Þ¤¹¡£
¤½¤Î¤¿¤á,½ç½ø¤Ë¤Ä¤¤¤Æ´·¤ì¤Æ¤¤¤Ê¤¤Êý¤Ï¤Ä¤é¤¤¤È»×¤¤¤Þ¤¹¡£
¤·¤«¤·,¤³¤ì°Ê¸å(¤Ç¤­¤ì¤Ð¼¡²ó¤â),Ã༡±é½¬¤Ê¤ÉÆþ¤ì¤Æ¤¤¤­¤Þ¤¹¤Î¤Ç¤À¤ó¤À¤ó¤Ë´·¤ì¤Æ¤¤¤Ã¤Æ¤¯¤À¤µ¤¤.)

Ⱦ½ç½ø½¸¹ç((partially ordered set,ά¤·¤Æ¤è¤¯ poset (¥Ý¡¼¥»¥Ã¥È¤ÈÆɤà)¤È¤¤¤ï¤ì¤ë) ¤È¤Ï, ½¸¹ç $P$ ¤È¼¡¤Î (1) $\sim$ (3)¤òËþ­¤¹¤ë $P$ ¾å¤Î2¹à´Ø·¸ $\leq$ ¤ÎÁÈ $(P, \leq)$ ¤Î¤³¤È¤Ç¤¹: Ǥ°Õ¤Î $x,y,z \in P$ ¤Ë¤Ä¤¤¤Æ,

  1. $x \leq x;$ (È¿¼ÍΧ)
  2. $(x \leq y ~and~ y \leq x ) \Rightarrow x=y;$ (È¿ÂоÎΧ)
  3. $( x \leq y ~and~ y \leq z ) \Rightarrow x \leq z.$ (¿ä°ÜΧ)

¤³¤Î¤È¤­, $\leq$ ¤Ï½ç½ø´Ø·¸ (order relation),ÆäË( $P$ ¾å¤Î)(Ⱦ)½ç½ø((partial) order)¤È¤¤¤¤¤Þ¤¹¡£

$P$ ¤¬¶õ½¸¹ç¤Î¤È¤­¤âÄêµÁ¤Ç¤­¤ë¤â¤Î¤È¤·¤Þ¤¹¡£
¤Þ¤¿,ÌÀ¤é¤«¤Ëº®Í𤬵¯¤­¤Ê¤¤¾ì¹ç,( $P,\leq$ )¤òñ¤Ë $P$ ¤È½ñ¤­¤Þ¤¹¡£
$P$ ¤ò½¸¹ç¤òÍ×ÁǤȤ¹¤ë½¸¹ç¤È¤¹¤ë¤È,½¸¹ç´Ö¤ÎÊñ´Þ´Ø·¸ $\subseteq$ ¤ÏÌÀ¤é¤«¤Ë½ç½ø´Ø·¸¤È¤Ê¤ê, $(P,\subseteq)$ ¤ÏȾ½ç½ø½¸¹ç¤Ç¤¹¡£
¤Þ¤¿, $x \leq y $ ¤ò $y \geq x$ ¤È¤â½ñ¤¯¤³¤È¤Ë¤·¤Þ¤¹¡£

¤³¤ÎÄêµÁ¤«¤é,Ì¿Âê6(¤½¤Î1)¤Ë¤è¤Ã¤Æ,¥Ö¡¼¥ëÂå¿ô $A$ ¤ÇÄêµÁ¤µ¤ì¤¿ $\leq$ ¤Ë´Ø¤·¤Æ, $(A,\leq)$ ¤ÏȾ½ç½ø½¸¹ç¤Ë¤Ê¤ê¤Þ¤¹¡£
Ǥ°Õ¤Î½¸¹ç $X$ ¤Ë¤Ä¤¤¤Æ, $(P(X), \subseteq)$ ¤âȾ½ç½ø½¸¹ç¤Ç¤¹¡£

$(P, \leq)$ ¤òȾ½ç½ø½¸¹ç¤È¤·¤Þ¤¹¡£
$Q$ ¤ò $P$ ¤ÎÉôʬ½¸¹ç¤È¤·¤Þ¤¹¡£
¤³¤Î¤È¤­, $\leq'$ ¤ò $\leq$ ¤ò $Q$ ¾å¤Ç¹Í¤¨¤¿¤â¤Î¤È¤¹¤ì¤Ð, $(P, \leq')$ ¤ÏȾ½ç½ø½¸¹ç¤Ë¤Ê¤ê¤Þ¤¹¡£
¤³¤Î $(P, \leq')$ ¤òñ¤Ë, $(Q, \leq)$ ¤Çɽ¤¹¤³¤È¤Ë¤·¤Þ¤¹¡£
$(Q, \leq)$ ¤Ï $(P, \leq)$ ¤ÎÉôʬȾ½ç½ø½¸¹ç¤È¤¤¤¤¤Þ¤¹¡£

$B$ ¤ò¥Ö¡¼¥ëÂå¿ô ${\cal A}$ ¤ÎÉôʬ±§Ãè¤È¤·¤Þ¤¹¡£
$A$ ¤ÇÄêµÁ¤µ¤ì¤¿ $\leq$ ¤Ë´Ø¤·¤Æ, $(B ,\leq)$ ¤Ï $(A,\leq)$ ¤ÎÉôʬȾ½ç½ø½¸¹ç¤Ë¤Ê¤ê¤Þ¤¹¡£

$(P, \leq)$ ¤òȾ½ç½ø½¸¹ç¤È¤·¤Þ¤¹¡£
$P$ ¤ÎÍ×ÁÇ $a$ ¤ÏÁ´¤Æ¤Î $ x\in P$ ¤Ë¤Ä¤¤¤Æ, $x \leq a$ ¤È¤Ê¤ë¤È¤­,ºÇÂ縵¤È¤¤¤¤¤Þ¤¹¡£
ƱÍͤË, $P$ ¤ÎÍ×ÁÇ $a$ ¤ÏÁ´¤Æ¤Î $ x\in P$ ¤Ë¤Ä¤¤¤Æ, $a \leq x$ ¤È¤Ê¤ë¤È¤­,ºÇ¾®¸µ¤È¤¤¤¤¤Þ¤¹¡£
$P$ ¤Ï¾ï¤ËºÇÂ縵¤Þ¤¿¤ÏºÇ¾®¸µ¤ò»ý¤Ä¤È¤Ï¸Â¤ê¤Þ¤»¤ó.
$P$ ¤ÎºÇÂ縵¤¬Â¸ºß¤¹¤ë¤È¤­¤Ï¤½¤ì¤ò1¤Ç,ºÇ¾®¸µ¤¬Â¸ºß¤¹¤ë¤È¤­¤Ï¤½¤ì¤ò0¤Çɽ¤·¤Þ¤¹¡£

(񂫪11)

  1. Ⱦ½ç½ø½¸¹ç¤È¤ß¤¿¥Ö¡¼¥ëÂå¿ô¤Ç¤ÏºÇÂ縵,ºÇ¾®¸µ¤Ï¸ºß¤·¤Þ¤¹¤«? ¤â¤·Â¸ºß¤¹¤ë¤Ê¤é¤Ð,¤½¤ì¤Ï²¿¤Ç¤¹¤«?
  2. ºÇ¾®¸µ¤ò»ý¤Ä¤¬,ºÇÂ縵¤ò»ý¤¿¤Ê¤¤È¾½ç½ø½¸¹ç¤ÎÎã¤òµó¤²¤Ê¤µ¤¤.
  3. ºÇÂ縵¤ò»ý¤Ä¤¬,ºÇ¾®¸µ¤ò»ý¤¿¤Ê¤¤È¾½ç½ø½¸¹ç¤ÎÎã¤òµó¤²¤Ê¤µ¤¤.
  4. ºÇÂ縵¤â,ºÇ¾®¸µ¤â»ý¤¿¤Ê¤¤È¾½ç½ø½¸¹ç¤ÎÎã¤òµó¤²¤Ê¤µ¤¤.
  5. ºÇÂ縵(ºÇ¾®¸µ)¤¬Â¸ºß¤¹¤ë¤È¤­,¤½¤Î°ì°ÕÀ­¤ò¾ÚÌÀ¤·¤Ê¤µ¤¤.
(±é½¬11¤Î½ª¤ï¤ê)

Ⱦ½ç½ø½¸¹ç $(P, \leq)$ ¤Î,¸µ $x,y$ ¤Ï, $( x \leq y ~or~ y \leq x )$ ¤¬¤¤¤¨¤ë¤È¤­,Èæ³Ó²Äǽ¤Ç¤¢¤ë¤È¤¤¤¤¤Þ¤¹¡£
$P$ ¤ÎÉôʬ½¸¹ç $C$ ¤Ï, $C$ ¤ÎÁ´¤Æ¤Î2¤Ä¤Î¸µ¤¬Èæ³Ó²Äǽ¤Ê¤È¤­,Ï¢º¿(¤Þ¤¿¤Ï,º¿)(chain) ¤È¤¤¤¤¤Þ¤¹¡£
$P$ ¼«¿È¤¬Ï¢º¿¤Î¤È¤­, $(P, \leq)$ ¤òÁ´½ç½ø½¸¹ç (totally ordered set), ¤¢¤ë¤¤¤Ï,Àþ·Á½ç½ø½¸¹ç(linearly ordered set)¤È¤¤¤¤¤Þ¤¹¡£
¤½¤Î¤È¤­, $\leq$ ¤Ï ( $P$ ¾å¤Î) Á´½ç½ø(total order),¤¢¤ë¤¤¤ÏÀþ·Á½ç½ø(linear order)¤È¤¤¤¤¤Þ¤¹¡£

Ǥ°Õ¤ÎÍ×ÁÇ $x,y \in P$ ¤Ë¤Ä¤¤¤Æ, $x \leq y $ ¤Þ¤¿¤Ï $y\leq x$ ¤Î¤¤¤º¤ì¤«¤¬À®¤êΩ¤Ä¤È¤­, $(P, \leq)$ ¤òÁ´½ç½ø½¸¹ç¤Ç¤¢¤ë¤È¤¤¤¦¤ï¤±¤Ç¤¹¡£
¡ÖǤ°Õ¤ÎÍ×ÁÇ $x,y \in P$ ¤Ë¤Ä¤¤¤Æ, $x \leq y $ ¤Þ¤¿¤Ï $y\leq x$ ¤Î¤¤¤º¤ì¤«¤¬À®¤êΩ¤Ä¡×¤È¤¤¤¦¤È¤³¤í¤Ï, ¡ÖǤ°Õ¤ÎÍ×ÁÇ $x,y \in P$ ¤Ë¤Ä¤¤¤Æ, $(x < y ~or~ x =y ~or~ y < x )$¡×¤È¤¤¤Ã¤Æ¤â¤«¤Þ¤¤¤Þ¤»¤ó.
¤³¤³¤Ç, $x <y$ ¤Ï $(x \leq y ~and~ x \ne y)$ ¤Ë¤è¤Ã¤ÆÄêµÁ¤µ¤ì¤Þ¤¹¡£
¾å¤ÈƱÍÍ, $x <y$ ¤ò $y > x$ ¤È¤â½ñ¤¯¤³¤È¤Ë¤·¤Þ¤¹¡£

¼Â¿ôÁ´ÂΤν¸¹ç,Í­Íý¿ôÁ´ÂΤν¸¹ç,À°¿ôÁ´ÂΤν¸¹ç¤Ê¤É¤Ï,ÉáÄ̤νç½ø¤Ç¹Í¤¨¤ÆÁ´½ç½ø½¸¹ç¤Ç¤¹¡£

(񂫪12)
Á´½ç½ø½¸¹ç¤Ç¤Ê¤¤È¾½ç½ø½¸¹ç¤ÎÎã¤òµó¤²¤Ê¤µ¤¤.
(±é½¬12¤Î½ª¤ï¤ê)

$M$ ¤òȾ½ç½ø½¸¹ç $P$ ¤ÎÉôʬ½¸¹ç¤È¤·¤Þ¤¹¡£
$P$ ¤ÎÍ×ÁÇ $s$ ¤Ï,Á´¤Æ¤Î $m \in M$ ¤Ë¤Ä¤¤¤Æ, $m \leq s (s \leq m)$ ¤òËþ­¤¹¤ë¤È¤­, $M$ ¤Î¾å³¦(²¼³¦)¤È¸Æ¤Ð¤ì, $M \leq s (s \leq M)$ ¤È½ñ¤­¤Þ¤¹¡£
$M$ ¤Ë¾å³¦(²¼³¦)¤¬Â¸ºß¤¹¤ë¤È¤­, $M$ ¤Ï¾å¤Ë(²¼¤Ë)Í­³¦¤Ç¤¢¤ë¤È¤¤¤¤¤Þ¤¹¡£
$M$ ¤Ï¾å³¦¤ò»ý¤¿¤Ê¤¤¤³¤È¤â¤¢¤ë¤·, ̵¸Â¸Ä¤Î¾å³¦¤ò»ý¤Ä¤³¤È¤â¤¢¤ê¤Þ¤¹¡£
¤³¤ì¤Ï²¼³¦¤Ë¤Ä¤¤¤Æ¤âƱÍͤǤ¹¡£
ÆäË, $s$ ¤¬ºÇ¾®¤Î¾å³¦(ºÇÂç¤Î²¼³¦)¤Ç¤¢¤ë¤È¤­, $M$ ¤Î¾å¸Â(²¼¸Â)¤È¤¤¤¤¤Þ¤¹¡£
¤½¤ì¤é¤Î±Ñ¸ì¤Ï,¾å³¦(upper bound), ²¼³¦(lower bound),¾å¸Â(supremum),²¼¸Â(infinimum) ¤Ç¤¹¡£

$M$ ¤Î¾å¸Â(²¼¸Â)¤Ç¤¢¤ë¤È¤­, $s= \Sigma M (s= \Pi M)$ ( $\Pi$ ¤Ï $\pi$ ¤ÎÂçʸ»ú)¤Çɽ¤·¤Þ¤¹¡£
$s= \Sigma M (s= \Pi M)$ ¤ò, $s= \sup M$ ¤ä $s= \cup M (s= \inf M ¤ä s= \cap M)$ ¤Çɽ¤¹¤³¤È¤â¿¤¤¤Ç¤¹¡£

(񂫪13)
¾å¸Â(²¼¸Â)¤Ï¸ºß¤¹¤ì¤Ð,°ì°ÕŪ¤Ë·è¤Þ¤ë¤³¤È¤ò¾ÚÌÀ¤·¤Ê¤µ¤¤.
(±é½¬13¤Î½ª¤ï¤ê)

(񂫪14)
$Nat$ ¤ò¼«Á³¿ôÁ´ÂΤν¸¹ç¤È¤·¤Þ¤¹¡£
$Fin$ ¤ò $Nat$ ¤ÎÍ­¸ÂÉôʬ½¸¹ç¤ÎÁ´ÂΤȤ·¤Þ¤¹¡£
$Cofin+$ ¤ò $Nat$ ¤ÎÉôʬ½¸¹ç $E$ ¤Ç, $E$ ¤Þ¤¿¤Ï $Nat \sim E$ ¤¬Í­¸Â¤Ë¤Ê¤ë¤â¤ÎÁ´ÂΤν¸¹ç¤È¤·¤Þ¤¹¡£
¤µ¤é¤Ë, $FinEven$ ¤ò $Nat$ ¤ÎÍ­¸ÂÉôʬ½¸¹ç ¤Ç¶ö¿ô¤Î¤ß¤«¤é¤Ê¤ë½¸¹çÁ´ÂΤν¸¹ç¤È¤·¤Þ¤¹¡£
¤³¤Î¤È¤­,Ⱦ½ç½ø½¸¹ç $(P(Nat), \subseteq)$ ¤È¤½¤ÎÉôʬȾ½ç½ø½¸¹ç $(Fin, \subseteq),(Cofin+, \subseteq),(FinEven, \subseteq)$ ¤ò¹Í¤¨¤Þ¤¹¡£
$FinEven \subseteq Fin \subseteq Cofin+ \subseteq P(Nat)$ ¤ÏÌÀ¤é¤«¤Ç¤¹¡£
¤³¤Î¤È¤­,
  1. $FinEven$ ¤Ï $(Fin, \subseteq)$ ¤Ç¤Ï¾å³¦¤ò»ý¤¿¤Ê¤¤¤¬, $(Cofin+, \subseteq)$ ¤Ç¤Ï̵¸Â¸Ä¤Î¾å³¦¤ò»ý¤Ä¤³¤È¤ò³Î¤«¤á¤Ê¤µ¤¤.
  2. ¤Þ¤¿, $(P(Nat), \subseteq)$ ¤Ç¤Ï,¶ö¿ôÁ´ÂΤν¸¹ç¤¬ $FinEven$ ¤Î ¾å¸Â¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤³¤È¤ò³Î¤«¤á¤Ê¤µ¤¤.
(±é½¬14¤Î½ª¤ï¤ê)

Ⱦ½ç½ø½¸¹ç $P$ ¤ÎÍ×ÁÇ(¸µ) $m$ ¤¬, $m<x$ ¤È¤Ê¤ë $ x\in P$ ¤¬Â¸ºß¤·¤Ê¤¤¤È¤­,$P$ ¤Î¶ËÂ縵¤È¤¤¤¤¤Þ¤¹¡£
ƱÍͤË, $P$ ¤ÎÍ×ÁÇ(¸µ) $m$ ¤¬ $m>x$ ¤È¤Ê¤ë $£ø \in P$ ¤¬Â¸ºß¤·¤Ê¤¤¤È¤­, $P$ ¤Î¶Ë¾®¸µ¤È¤¤¤¤¤Þ¤¹¡£
¶ËÂ縵(¶Ë¾®¸µ)¤Ï¤Ê¤¤¤³¤È¤â¤¢¤ê¤Þ¤¹¤·,1¤Ä¤¢¤ë¤¤¤ÏÊ£¿ô¸Ä¤¢¤ë¤³¤È¤â¤¢¤ê¤Þ¤¹¡£
$P$ ¤¬ºÇÂ縵(ºÇ¾®¸µ)¤ò»ý¤Ä¤È¤­,¤½¤ì¤Ï¤¿¤À°ì¤Ä¤Î¶ËÂ縵(¶Ë¾®¸µ)¤È¤Ê¤ê¤Þ¤¹¡£

¤Á¤ç¤Ã¤È´ó¤êÆ»¤Ç¤¹¤¬,Ⱦ½ç½ø½¸¹ç $P$ ¤¬µ¢Ç¼Åª½ç½ø½¸¹ç (inductively ordered set) ¤Ç¤¢¤ë¤È¤Ï, $P \ne 0$ ¤Ç¤¢¤Ã¤Æ, $P$ ¤ÎǤ°Õ¤Î¶õ¤Ç¤Ê¤¤Á´½ç½øÉôʬ½¸¹ç(=Ï¢º¿)¤¬ ¾å¤ËÍ­³¦¤Ç¤¢¤ë(¾å³¦¤¬Â¸ºß¤¹¤ë)¤Ç¤¢¤ë¤³¤È¤ò¤¤¤¤¤Þ¤¹¡£

¤³¤³¤Ç,¿ô³Ø¤Î¾ÚÌÀ¤ËÎɤ¯ÍѤ¤¤ëͭ̾¤Ê $Zorn$ (¥Ä¥©¥ë¥ó) ¤ÎÊäÂê¤ò¾Ò²ð¤·¤Þ¤·¤ç¤¦.¤½¤ì¤Ï, ¡ÖȾ½ç½ø½¸¹ç $P$ ¤¬µ¢Ç¼Åª½ç½ø½¸¹ç¤Ê¤é¤Ð, $P$ ¤Ï¶ËÂ縵¤ò»ý¤Ä.¡× ¤Ç¤¹¡£
¤³¤ì¤Ï½¸¹çÏÀ¤ÎÁªÂò¸øÍý¤ÈƱÃͤˤʤê¤Þ¤¹¡£
ÁªÂò¸øÍý¤È¤Ï,½¸¹çÏÀ¤ÎǺ¤Þ¤·¤¤(?) ¸øÍý¤Ç,¡Ö2¤Ä¤º¤Ä¸ß¤¤¤ËÁǤʶõ¤Ç¤Ê¤¤½¸¹ç¤«¤é¤Ê¤ë½¸¹ç $A$ ¤¬Í¿¤¨¤é¤ì¤Æ¤¤¤ë¤È¤­, ¼¡¤Î¾ò·ï¤òËþ¤¿¤¹½¸¹ç $S$ ¤¬Â¸ºß¤¹¤ë:Ǥ°Õ¤Î $X \in A$ ¤Ë¤Ä¤¤¤Æ, $S \cap X= \{ Y \}$ ¤È¤Ê¤ë½¸¹ç $Y$ ¤¬Â¸ºß¤¹¤ë.¡× ¤È¤¤¤¦¤â¤Î¤Ç¤¹¡£
ÁªÂò¸øÍý¤Ë¤Ï¿§¡¹¤Ê¥Ð¡¼¥¸¥ç¥ó¤¬¤¢¤ê¤Þ¤¹¡£
ÁªÂò¸øÍý¤Ï¾ÚÌÀ¤¹¤ë¤È¤­¤ÎÎɤ¤Æ»¶ñ¤Ë¤Ê¤ë¤Î¤Ç¤¹¤¬,Ǻ¤Þ¤·¤¤¤È¤¤¤¦¤Î¤Ï,¤³¤ì¤«¤é,¾ï¼±³°¤Î¤³¤È¤¬Æ³¤­½Ð¤»¤ë¤«¤é¤Ç¤¹¡£
¤¿¤È¤¨¤Ð,µå¤òŬÅö¤Ëʬ³ä¤·¤Æ¤Þ¤¿´ó¤»½¸¤á¤ë¤È,¸µ¤Îµå¤ÈÁ´¤¯Æ±¤¸µå¤ò2¤Äºî¤ì¤ë¤È¤¤¤¦,¥Ð¥Ê¥Ã¥Ï¡¦ ¥¿¥ë¥¹¥­¡¼¤Î¥Ñ¥é¥É¥Ã¥¯¥¹¤¬ÁªÂò¸øÍý¤«¤é¾ÚÌÀ¤Ç¤­¤Þ¤¹¡£
¤³¤ì¤Ë¤Ä¤¤¤Æ¤Ï,

º½ÅÄÍø°ìÃø¡Ö¥Ð¥Ê¥Ã¥Ï¡¦¥¿¥ë¥¹¥­¡¼¤Î¥Ñ¥é¥É¥Ã¥¯¥¹¡×´äÇȽñŹ¡¡1997ǯ ¤È¤¤¤¦Ëܤ¬¤¢¤ê¤Þ¤¹¡£
º½ÅĤµ¤ó¤Ï¿ô³Ø¼Ô¤È¤·¤ÆÃø̾¤ÊÊý¤Ç¤¹¡£
¤¿¤·¤«,»Ö²ì¹ÀÆóÃø¡Ö̵¸Â¤«¤é¤Î¸÷çê¥Ý¡¼¥é¥ó¥É³ØÇɤοô³Ø¼Ôã¡×ÆüËÜɾÏÀ¼Ò¡¡1988ǯ
¤Ë¤â,¤½¤Îµ­½Ò¤¬¤¢¤Ã¤¿¤è¤¦¤Ëµ­²±¤·¤Æ¤¤¤Þ¤¹¡£
¤Ï¤Ã¤­¤êµ­²±¤·¤Æ¤¤¤Þ¤»¤ó¤¬.»Ö²ì¤µ¤ó¤â¿ô³Ø¼Ô¤È¤·¤ÆÃø̾¤ÊÊý¤Ç¤¹¡£
¾å¤Î2ºý¤È¤âÀÎ,½ñŹ¤Ç¥Ñ¥é¥Ñ¥é¤È¸«¤¿¤À¤±¤Ê¤Î¤ÇËÜÅö¤Ë¿äÁ¦¤¹¤Ù¤­½ñʪ¤«¤É¤¦¤«¤Ï¤ï¤«¤ê¤Þ¤»¤ó.
Ãø̾¤ÊÊý¤¬½ñ¤¤¤Æ¤ª¤é¤ì¤ë¤Î¤ÇÂç¾æÉפÀ¤È¤Ï»×¤¤¤Þ¤¹¡£
Íνñ¤Ç¤â,¥Ð¥Ê¥Ã¥Ï¡¦¥¿¥ë¥¹¥­¡¼¤Î¥Ñ¥é¥É¥Ã¥¯¥¹¤Î¤ß¤Ë¤Ä¤¤¤Æ½ñ¤«¤ì¤¿¤â¤Î¤ò¸«¤¿¤³¤È¤¬¤¢¤ê¤Þ¤¹¡£
Banach-Tarski Pradox ¤È¤¤¤¦¥¿¥¤¥È¥ë¤À¤Ã¤¿¤«¤Ê.˺¤ì¤Þ¤·¤¿.

ÁªÂò¸øÍý¤Ë¤Ä¤¤¤Æ¤Ï,(¿¿ÂÇÅоì!) ÅÄÃæ¾°Éפµ¤ó¤Î, ÅÄÃæ¾°É×Ãø¡ÖÁªÂò¸øÍý¤È¿ô³Ø(ÁýÊäÈÇ)¡×Í·À±¼Ò¡¡1999ǯ

¤Ë¾Ü¤·¤¤µ­½Ò¤¬¤¢¤ê¤Þ¤¹¡£
¤Þ¤¿,ÁªÂò¸øÍý¤Î¤ß¤ò°·¤Ã¤¿¿ôÍýÏÀÍý³Ø¤ÎÀìÌç½ñ (Íνñ) (The Axiom of Choice)¤¬ North-Holland¼Ò¤«¤é2ºý½Ð¤Æ¤¤¤Þ¤¹¡£
ÅÄÃ椵¤ó¤ÎËܤϤޤ¿¤·¤Æ¤â¤ªÁ¦¤á¤Ç¤¹¡£
²æ¡¹¤Î¥Ö¡¼¥ëÂå¿ô¤È¤â´Ø·¸¤¬¤¢¤ê¤Þ¤¹¡£
µ¡²ñ¤¬¤¢¤ì¤Ð¸«¤Æ¤ß¤Æ¤¯¤À¤µ¤¤.(ÅÄÃ椵¤ó¤ÎËܤˤâ¥Ð¥Ê¥Ã¥Ï¡¦¥¿¥ë¥¹¥­¡¼¤Î¥Ñ¥é¥É¥Ã¥¯¥¹¤¬, º£½Ò¤Ù¤¿¤â¤Î¤È¤Ï¤¹¤³¤·°Û¤Ê¤ë¤«¤¿¤Á¤ÇºÜ¤Ã¤Æ¤¤¤Þ¤¹¡£ )

¤³¤Î¥»¥ß¥Ê¡¼¤Ç¤â,¶á¤¤¾­Íè,¥Ä¥©¥ë¥ó¤ÎÊäÂê¤òÍѤ¤¤Æ½ÅÍפÊÄêÍý¤ò¾ÚÌÀ¤·¤Þ¤¹¡£
¤µ¤Æ,´ó¤êÆ»¤«¤éËÜÆ»¤ËÌá¤ê¤Þ¤·¤ç¤¦.

Ⱦ½ç½ø½¸¹ç $(L, \leq)$ ¤Ë¤ª¤¤¤Æ,Ǥ°Õ¤Î2¸µ $x,y \in L$ ¤Ë¤Ä¤¤¤Æ, ½¸¹ç $\{x,y \}$ ¤Î¾å¸Â¤ª¤è¤Ó²¼¸Â¤¬ ( $L$ ¤ÎÃæ¤Ç)¸ºß¤¹¤ë¤È¤­, $L$ ¤ò«(lattice)¤È¤¤¤¤¤Þ¤¹¡£
¶õ½¸¹ç0,¤¢¤ë¤¤¤Ï¤¿¤À°ì¤Ä¤ÎÍ×ÁǤ«¤é¤Ê¤ëȾ½ç½ø½¸¹ç¤â¤½¤ì¤¾¤ì«¤ò¤Ê¤·¤Þ¤¹¡£
Æä˸å¼Ô¤òñ°Ì«¤È¤¤¤¤¤Þ¤¹¡£
$\{x,y \}$ ¤Î¾å¸Â,²¼¸Â¤ò¤½¤ì¤¾¤ì, $x+y,x \cdot y$ ¤Èɽ¤·¤Þ¤¹¡£
+¤È $\cdot$ ¤ÎÂؤï¤ê¤Ë,¤½¤ì¤¾¤ì, $\cup $ ¤È $\cap $ ¤È¤«, $\lor$ ¤È $\land$ ¤ò»È¤¦¤³¤È¤â¿¤¤¤Ç¤¹¡£
«¤Ë´Ø¤·¤Æ¤â,ÁÐÂФθ¶Íý¤¬À®¤êΩ¤Á¤Þ¤¹¡£
(Ãí: $x \leq y $ ¤ÎÁÐÂÐÌ¿Âê¤Ï, $y\leq x$ ¤Ç¤¹¡£ )

Ǥ°Õ¤Î½¸¹ç $X$ ¤Ë¤Ä¤¤¤Æ, $(P(X), \subseteq)$ ¤Ï«¤Ë¤Ê¤ê¤Þ¤¹¡£

\begin{displaymath}x+y=x \cup y,x \cdot y=x \cap y\end{displaymath}

¤¬À®Î©¤·¤Þ¤¹¡£
¤Þ¤¿,Ǥ°Õ¤Î $M \subseteq P(X)$ ¤Ë¤Ä¤¤¤Æ,

\begin{displaymath}\Sigma M = \cup M, \Pi M = \cap M\end{displaymath}

¤¬À®Î©¤·¤Þ¤¹¡£

(񂫪15)
$K$ ¤òÂΤȤ·, $V$ ¤ò $K$ ¾å¤ÎÀþ·Á¶õ´Ö¤È¤¹¤ë. $L$ ¤ò $V$ ¤ÎÉôʬ¶õ´ÖÁ´ÂΤν¸¹ç¤È¤¹¤ë.
(Àþ·Á¶õ´Ö,Àþ·Á¶õ´Ö¤ÎÉôʬ¶õ´Ö¤ÎÀâÌÀ¤Ï¾Êά¤·¤Þ¤¹¡£ )
¤³¤Î¤È¤­,
  1. $(L, \subseteq)$ ¤Ï«¤Ë¤Ê¤ë¤³¤È¤ò¾ÚÌÀ¤·¤Ê¤µ¤¤.
  2. Ǥ°Õ¤Î $M \subseteq L$ ¤Ë¤Ä¤¤¤Æ, $\Pi M = \cap M$ ¤È¤Ê¤ë¤³¤È¤ò¾ÚÌÀ ¤·¤Ê¤µ¤¤.
  3. Ǥ°Õ¤Î $M \subseteq L$ ¤Ë¤Ä¤¤¤Æ, $\Sigma M$ ¤Ï $\cup M$ ¤Ë¤è¤Ã¤ÆÀ¸À®¤µ¤ì¤¿Éôʬ¶õ´Ö¤È¤Ê¤ë¤³¤È¤ò¾ÚÌÀ¤·¤Ê¤µ¤¤.
(±é½¬15¤Î½ª¤ï¤ê)
¼¡Àá¤Ç¤Ï,¥Ö¡¼¥ëÂå¿ô¤¬ÁêÊäŪ¤ÊʬÇÛ«¤ÈÄêµÁ¤µ¤ì¤ë¤³¤È,¤ª¤è¤Ó,¥Ö¡¼¥ëÂå¿ô¤Ë¤ª¤±¤ëÂçÀÚ¤ÊÄêÍý¤ä, ½àƱ·¿¼ÌÁü,Ʊ·¿¼ÌÁü¤òÃæ¿´¤Ë¿Ê¤á¤Æ¤¤¤­¤Þ¤¹¡£


next up previous
: ±é½¬3 : ¥Ö¡¼¥ëÂå¿ô¤Î´ðÁà : ÁÐÂи¶Íý¤Ë¤Ä¤¤¤Æ¤ÎÊä­
Yasunari SHIDAMA