next up previous contents
: theorem :: SYSREL'2: : xboole1.miz : theorem BOOLE'30: :: BOOLE'30:   Ìܼ¡

theorem BOOLE'64: :: BOOLE'64:

theorem BOOLE'64: :: BOOLE'64:
  (X \/ Y) \/ Z = X \/ (Y \/ Z)
proof
 thus (X \/ Y) \/ Z c= X \/ (Y \/ Z)
   proof let x;
      assume x in (X \/ Y) \/ Z;
      then x in X \/ Y or x in Z by XBOOLE_0:def 2;
      then x in X or x in Y or x in Z by XBOOLE_0:def 2;
      then x in X or x in Y \/ Z by XBOOLE_0:def 2;
      hence thesis by XBOOLE_0:def 2;
   end;
  let x;
  assume x in X \/ (Y \/ Z);
  then x in X or x in Y \/ Z by XBOOLE_0:def 2;
  then x in X or x in Y or x in Z by XBOOLE_0:def 2;
  then x in X \/ Y or x in Z by XBOOLE_0:def 2;
  hence thesis by XBOOLE_0:def 2;
end;
¡¡¤³¤ì¤Ï°Ê²¼¤ÎÄ̤ê¤Ç¤¹¡£


\begin{displaymath}
(X \cup Y) \cup Z = X \cup (Y \cup Z)
\end{displaymath}

¾ÚÌÀ

\begin{eqnarray*}¡¡
&&¤Þ¤º¡¤(1)~~(X \cup Y) \cup Z \subseteq X \cup (Y \cup Z)...
...ꡤ \\
&&X \cup (Y \cup Z)¡¡\subseteq¡¡(X \cup Y) \cup Z \\
\end{eqnarray*}

¤è¤Ã¤Æ¤³¤ì¤È(1)¤«¤é

\begin{displaymath}
(X \cup Y) \cup Z = X \cup (Y \cup Z)
\end{displaymath}

¾ÚÌÀ½ªÎ»



Yasunari SHIDAMA